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SLOW CYCLOTRON WAVE GROWTH BY PERIODIC INiIXTI\~
STRUCTURES

WILLIAY R. SHA!NAHAN,BRENDA,NB. GODFREY, AND RIChZl J.
FAEHL, University of California, Los Alamos Scientific
Laboratory, Theoretical Division, Los Alamos,
New Mexico 87545

The Auto-Resonant Accelerator concept of
collective ion acceleration is critically de-
pendent for its success upon the availability
of an effective means with which to grow the
relevant slow cyclotron wave. lie present a
preliminary study of such growth via J two-
dimensionally periodic slow wave structure.
This structure consists of a z-sloLted xaveguide
about which are placed conducting straps axially
and azimuthally interru~ted by capacitive gaps.
Appropriate boundary conditions are derived
without reference to concepts borrowed from low
frequency circuit theory. These boundary condi-
tions have been incorporated into a numerical
code which performs linear normal mode ~nalyses
about self-consistently generated nonneutral
relativistic electron beam equilibri~. This
same code may also be employed to exmmine the
purely vacuum modes, which exhibit expected be-
havior. Questions of structure tuning ;Iredis-
cussed. Initial results concerning wave growth
are presented, and future activities indicated.

In the travelling-wave class of collective ion accel-

eration schemes, ions are placed in the trough of a large

amplitude plasma wave that has been produced on a relativ-

istic electron beam. The ion-wave system is dlen acceler-

ated by increasing the phase-velocity of the wave chrougtl
1,2 or

suitable spatial temporai3 vari3tion of system



parameters. Crucial to the success of such schemes is the

availability of an effective method with which to grow

such large amplitude waves. For the Auto-Resonant Acceler-

ator, where one is concerned with the slow cyclotron mode,

sever~l such rne~hods have been investigated in the past.

[n one
4

zpproach explicit advantage is taken of the

negative-energy nature of the slow cyclotron mode to grow

the wave through the introduction of a dissipative element,

s~ch as a resistive liner. In another, perhaps more famil-

iar me~hod, growth is achieved by permitting the electron

b:am to interact with a slow-wave structure. The use of

such structures is particularly attractive in this context,

inasmuch as their spatial structuring offers at least the

possibility of growing modes with prescribed desirable

properties while discriminating against 1.PZS favorable

waves . In particular, the slow-wave structure consistin~

of a metallic helix surrounding the relativistic electron

b~am has hitherto been extensively investigated from this

4,5
:oint of view. In this paper, we present preliminary

results ~f an investigation of another, quite different,

slow-wave structure.

The system considered here consists of a z-slotted

wnve-guide around which are placed conducting straps .

These straps are interrupted .~th axially and azlmuthally

by capacitive gaps LO give rise to a two-~iimensionally

periodic structure. ‘The entire system ], enclosed within

an outer cylindric~l conducting wall. ‘This structure, the

resonant loop-drive, is depicLed in FLg. 1. Interaction

of an electron beam with such a structure may be viewed in

two quite conceptl’ally distinct, but physically equivalent

ways. Firstly, the periodic structure may be considered

to be an effective LC-circuit with the electron beam
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Fig. 1. Resonant loop
drive slow wave
structure.

sequently extracted from

tive energy in character,

Tha second, perhaps

the interaction between

serving as a source of electro-

motive force. Tht\ \-arious

geometric features of the slow-

wave structure, such as the

axial and azimuthal periodic-

ities and corresponding strap

lengths and widths, may then

be adjusted to provide the

effective LC-circuit with a

resonant frequency appropriate

to the beam mode whose growth

is desired. Energy is con-

this mode; and since it is nega-

the amplitude of the mode grows.

more satisfying, way of viewinfl

the electron beam and the slow-

wave structure being considered here is as being the

solution of a boundary-value problem involving Maxwell’s

equations and a periodic

dispersion relation of the

w-k space the periodicity

boundary. In this view, the

relevant vacuum mode mirrors in

in real space introduced by the

boundary conditions. This mode is consequdncly highly

distorted from its periodicity-free form and m~y he expect-

ed to intersect the less affected slow-cyclotron mode, the

position and strength of the intersection being controlled

by the geometric properties of the slow-wave structure.

Of course, this is also the conventional view of the slow-

wave structure interaction with non-relativistic electron

beams.
6

Austin Research Associates, Inc. the inventors of the

Auto-Resonant Accelerator principle, have presented :1very

useful analytic (Iiscusnion 01 thp slow-wnve structllre



uncler consider:ltion from the point of view of lumped-
7elument circuit theory. Such an analysis is essential

fOr obtaining an intuitive gra ? of the dynamics of slow

cyclotron wave growth by this method. However, this

approach makes a number of assumptions whose limits it

would be desirable to deiineate. Firstly, a treatment

strictly from the perspective of Haxwell’s equations is

desirable in determining those regions of frequency and

wave-number where the more tractable lumped-element cir-

cuit theory is applicable. Such a determination should

provide greater confidence in future analytic studies.

Secondly, earlier analysis assumed

gaps were so numerous that their

assumed to be u~iformly distributed

that the capacitative

capacitance could be

ic.the azimuthal direc-

tion. In reality, the capacitance is concentrated at

various points about the circumference of the conducting

straps, thereby introducing ~ periodic”ityin this direc-

tion. Such a periodicity can have a marked effect on the

relevant mode structure, linking together modes of dif-

ferent azimuthal quantum number. The analysis to be pre-

sented below addresses this question. Lastly, previous

investigators employed a model beam profile which essen-

tially ignored all radial variations. tiumericalinvesti-

gation has revealed that such a profile is not always

appropriate for an electron beam with parameters suitable
8

for collective ion acceleration. An

effect O: a more realistic profile on

is clearly desirable,

The purpose of this paper is to

liminary results of an investigation

these issues. We begin by deriving

investigation of the

the growth mechanism

report on some pre-

designed to address

boundary conditions

suitable to the slow-wave structure described above. No



recourse is made during this derivation to concepts bor-

rowed from low-frequency circuit theory. These boundary

conditions have been incorporated into a nume.ical code

designed earlier to investigate the equilibrium and eigen-

modes of a relativistic electron beam propagating in a non-

periodic geometry. This same code may be employed to

●xamine the vacuum modes, an understanding of which is

essential to a full appreciation of the cyclotron wave

growth mechanism. Finally, we turn to some initial

results regarding ~yclotron wave growth on a relativistic

beam.

The boundary conditions to be applied are simply those

that the tangential electric field component Ee(r = a) be

continuous everywhere and vanish identically on the con-

ducting straps. Further, the radial deri-4atives are

required to be continuous at the gaps. The tangential

electric field component Ez(r = a) is, of course, forced

to be zero by the presence of the z-slotted waveguide.

The usual metallic boundary-value conditions are assumed

to be applicable at the outer conducting wall. These con-

ditions may be sunsnarizedconveniently as:

E {Ee(r = a)S(e - jfJO)S(jf10+ 9s - e)S(z - hL)S(hL+ d - z)

hj

(
@

I +- L=2)S[(J+)’%-e]

&)

+—
i)r r=a

x s(e - j no - es)s(z - hL - d)S(hL + L - Z)] = O (la)

(lb)



Here L is the axial periodicity length, eO is the corres-

ponding azimuthal quantity, while d and 8= are respective-

ly the axial length and angular width of the conducting

straps. The superscripts (1,2) refer to the regions

interior and exterior to ~he slow wave structure. We have

also introduced the standard unit step function:

I
1 X>o

s(x) = .

0 X<()

The rather unsightly expression (la] may be somewhat

simplified to yield:

#) ~F(21

[

~E(l)
%

~E(2)
—- —
ilr i3r 1+E~l)-~-~- Str(z,fl)=O (2)

where Str(z,e) is that combination of step functions defin-

ing the positions of the straps:

str((3,z)=
z

S(z - hL)S(hL + d - z)S(e - jeo)

hj

(3)x S(jeo + es - e) .

The numerical code into which the above boundary con-

ditions are tr be incorporated solves for the eigenfre-

quencies and radial eigenfunctions of a mode of the beam-

waveguide system which has a specified axial wave number

kz and a particular azimuthal qu?ntum number Q. Conse-

quently, Equation (2) must be put into a form consistent

with such a scheme. The two-dimensional periodicity of



the present slow-wave structure implies that the fields

will have the form of Bloch functions:

x i(k+pkO)z+i(~+nmO)e
~(1~2) (r,Z,e) = #,u(r) e . (4)

kJ2

np

The desired form may be obtained by substituting (4) into

(2), multiplying by the usual Fourier exponential, and

effecting the necessary elementary integrations. The re-

sult is:

~(lnp) + ~

~[

2nL *
e 90L

esd - —
‘o nn‘&w”

n’p”

sin(p” - p)kOd/2
+0

s T- - p)kO/2

dsin(n” - n)mOe~/2
6 .+
nn (n” - n)mo/2

sin(n- - n)mOe~/2 sin(p- - p)kod/2
+

(n” - n)mO(p- - p)ko/2 1

where we have defined:

i(pkod/2+~Oes/2) ~(lnp) (r
g;lnp) (r s a) = e

e = a)

(5)

(6)

and



[(An= ●p. ~ %+nlno+l (kpa) + I;+m .1 (kpa)
o )

( (kpb) + K2+m -1 (kpb)x ,%+rlmo+l
o )

(
- lg+mo+l (kpb) + I~+nmo-l (kpb))

( )1
x ‘~+MIo+I(kpal + K~+m-1 (kpa) D .

0
(7a)

D= W+mo+l(kpa) + Ig+m -1 (kPa)]
o

x [Kl+mo+l (kpb) + K

●

I+nmo-l (kpb)l - [a *b] . (7b)

(7C)

The expression (7) is derived from a consistent applica-

tion of boundary condition (lb) together with that deriv-

ing from the continuity of the tangential electric field.

Here k. = 2n/L and m. is the analogous, but integral,

quantity, which is in fact the number of azimuth~l gaps

employed. The prime on the summation symbol denotes, as

usual, the omission of terms which would give rise to

singularities through the vanishing of denominators. The

quantity & is the dielectric constant of the material

which fills the region between the slow wave structure and

the outer conducting wall. This material has been intro-

duced for numerical tuning, as will be elaborated further

below.



Equation (5) could perhaps be made the basis of ana-

lytic study of slow cyclotron wave growth. Such a study

would require several assumptions and approximations whose

Vall,flityic parameter regimes of experimental interest is

noc always clear. Our inmediate objective has been rather

to employ Equation (5) to conduct numerical investigations

which are not limited by such assumptions and approxima-

tions. Previsouly,8 a numerical code, GRADR, was written,

which constructs self-consistent beam equilibria and per-

forms a normal mode analyses of linear perturbations made

about such equilibria. The code produces both the eigen-

frequency and the corresponding radial eigenfunctions of

a given mode. The equilibria examined have a number of

Ieatures not shared by the model equilibria generally

employed in analytic studies. In particular, the radial

variation of the relativistic factor induced by the pre- .

sence of the space charge is automatically included. This

variation has a profound effect, both on the form of the

radial eigenfunct’.onsand on the overall appearance of the

dispersion diagram. While the dis~ersion properties of

the slow cyclotron wave under discussion are but little

modified, the radial eigenfunctions are considerably modi-

fied from the Bessel function form characteristic of uni-

form radial profil~s. Particularly striking is the peak-

ing of the relevant eigenmode about the edge of the beams.

In addition, discrete modes which appear in the uniform

theory are replaced by bands of continuous modes. These

features can have significant consequences for cyclotron

wave growth mechanisms, leading, for exaaple, to the neces-

sity of greater radial modulation than that predicted by

the uniform theory and to the shif~ing of relevant dis-

crete modes into the regions of continua. These questions



.

have been extensively investigated for growth by helical
5slow wave structures, but are yet to be addressed for the

lnop-drive.

The numerical code described above has been modified

to include the periodic boundary conditions displayed in

Eq. (5).

The code may also be used to examine the purely vacuum

modes of the slow wave structure. Such an examination is

necessary for a full understanding of the interaction when

a beam is present. Study of the vacuum ❑odes is also

usefd in assessing the accuracy of various truncations

which must be effected when using &q. (5). We expect that

the vacuum mode will be relatively flat and that it will

exhibit a periodicity in w-k space given by kO. The

degree to which this periodiuity is observed may be taken

as a measure of the zccuracy of a given truncation scheme.

These expectations have been fully realized. Ru& with

‘o
= 1 and d/L = 0.5-0.9 have revealed modes which vary in

frequency by approximately 15 percent throughout a

Brillouin zone. With three axial zones the frequency was

periodic to within 2 percent, while with 5 it was periodic

to within a tenth of a percent. These results were but

little changed when azimuthal periodicity was included.

A further question which ❑ay be addressed through a

study of the vacuum modes is that of tuning the slow wave

structure. One would like tc achieve the growth of waves

with phase velocities roughly in the range of 0.1-0.25.

For parameters typical of Auto-Resonant Accelerator opera-

tion, this corresponds to a resonant frequency for the

slow wave structure of wo = 0.06-0.1 u . This frequency
P

is, of course, a function of the various geometrical

factors involved, and one might believe that a judicious



.

choice Of these quantities would lead to the desired value.

Actually, it tias found difficult to reduce this frequency

much ~elow 0.2 without losing significant coupling between

the v~’riouscomponents. This difficulty can probably be

traced ta our <idealization of the gaps as having no radial

extent. The inclusion of a finite radial width wc~uld pre-

sumably lead to a greater effective capacitance in the

equivalent circuit of the slow wave structure and conse-

quently a lo~er resonant frequency. In the analysis of

such a system one must recognize that the azimuthal and

axial dependencies of the fields within the gaps are not

identical to those occurring ir~ the interior and exterior

regions. Consequently, several important simplifications

which occurred in the derivation of (5) do not apFear, and

the calculation rapidly becomes unwieldy. Rather than

pursue this course, we have inst:ad resorted to the simple

expedient of filling the regit~n between the slow wave

structure and the exterior wall with a substance of con-

stant dielectric constant E z 30-60. This quantity can

now be adjusted to yield the desired resonant frequency.

It is to be stressed that although the dielectric is being

introduced here purely to achieve the desired tuning, it

is not altogether clear that the presence of such a sub-

stance is not possible or desirable in the actual system.

This issue must await the resolution of dielectric break-

down questions, Nevertheless, using this procedure with

dielectric constants in the range 30-60, we have been able

to produce vacuum modes of the desired frequency. cyclo-

trcn wave gcowth at the desired phase velocity has not,

however, yet been achieved.

Preliminary results for cyc?,otron wave :rowth at a

somewhat higher phase velo’.ity are exhibited in Fig. 2.
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Fig. 2. Cyclotron wave Rrowth with

Y = 7, Rbeam = 2.65 c/wp,

il = 3.8 c/uJp, b/a = 10,

!-l= 2.(Iw .
c P

Although the parameters c’losen to generate this graph do

not necessarily optimize ~he growth rate, examination of

Lhe results of this run reveal a number of features which

are likely to persist ui,&r more favorable circumstances.

Firstly, as is clear from the graph itself, the region of

growth is very narrow in w-k space. This is in marked

contrast to the case of the helical structure, which is a

broad-band amplifier. Such sharpness of the resonance may

pruve an important advantagt from the point of view of co-

herence, provided ~hat it does not seriously militate

against initial excitation of the desired mode. Further

●xamination reveals significant coupling between the prin-

cipal mode and those lying immedi?cely adjacent diffrac-

tion zones, the ratio of amplitudes being roughly 0.25.

Coupling to more distant zone. is much less. Some concern



may therefore arise that unwanted motles w1ll experience

significant growth. Actually, such concern is Imwarranted

in ?.hepresent case, since the relev~nt mot!es lle in ban(is

of the continuous modes referred to above. Previous in-

vestigation has revealed that such modes, if excited, tend

to phase mix Jway in a secul~r fashion.

Further study along the lines sketched here is clear-

ly required to ascertain whether this slow wave strllcture

x:11 provide dn effective growth of the slow cyclotron

waves for Auto-Resonant Acceleration, The linear theory

code described above will be used in the near future to

determine those beam and structure parameters which leJd

to optimal phase velocity and growth rate. The important

question of the growth of modes with higher principal azi-

muthal quantum numbers wi 11 also he d[lllrcssed. All the

information thereby gained will br Ils(*dto choose par;]-

meters with which to perfor; cylindrical, relativistic,

fully electromagnetic particle computer simulations of

slow cyclotron wave growth by the resonant loop-drive.
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